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A possible path to the solution of the problem of controlled thermonuclear fusion consists of heating up a target 
containing a DT mixture by compressing it with a dense shell accelerated to velocities 3~ 107 cm/sec [1 ]. One of the methods 
for achieving such compression is the use of megagauss magnetic fields [2]. This method is attractive due to the possibility 
of obtaining a comparatively high (~  1%) transfer coefficient of the initially stored energy to the shell. An accumulation of 
kinetic energy occurs both due to the pressure of the magnetic field and due to the dispersion of material from the shell 
surface. Both acceleration mechanisms operate when the shell is subject to an electrical explosion (EE) by a strong current 
pulse. A calculation of the electrical explosion of a thin cylindrical shell upon the discharge of a megajoule capacitor bank 
into it is performed in [3]. Compression rates up to 3 X 10 T cm/sec are obtained in the calculation; however, the compara- 
tively low rates of current growth provided by a capacitor bank have led to the necessity of choosing a very small initial 
relative shell thickness %10 -s . The heating of the gas filling the shell and the conditions for the occurrence of thermonuclear 
reactions were not considered in this research. 

The results of a numerical calculation of the compression and thermonuclear burning of a DT mixture upon its com- 
pression by a cylindrical shell are given in [4]. The calculations show that burning of DT with a positive energy yield is 
possible with a constant power liberated in the shell of ~ 3 • 1024 W. The possibility of an electrodynamic means of power 
liberation is mentioned; however, this process has not been considered in more detail, and the magnetohydrodynamic effects 
in the shell and the plasma were not discussed. 

This paper is an attempt at a computational estimate of the possibility of producing thermonuclear fusion by elec- 
trically exploded shell compression. The processes in the electrical circuit of the device, magnetohydrodynamic processes in 
the target, and the occurrence of fusion reactions are taken into account. The shell compression is assumed to be ideally 
symmetric. Questions of the stability of the compression [5] are not considered in this paper. 

An analysis of electrophysical devices from the viewpoint of their possibilities for creating an energy density ~,MJ/g 
in a conductor upon its being electrically exploded has been performed in [6]. It is shown that such a possibility may be 
realized if lines with distributed parameters connected in parallel are discharged into the load, which is a cylindrical shell. 
Therefore we will restrict ourselves in what follows to a discussion of the EE of copper cylindrical shells located at the 
center of a disk collector to which a system of lines is connected in parallel. 

The system of one-dimensional equations of magnetohydrodynamics (MHD) with thermal conductivity, where the 
latter was taken into account in the diffusion approximation, was used to describe the EE of cylindrical shells. The thermal 
conductivity coefficient was taken to be proportional to the 5/2 power of the temperature, i.e., it was assumed that heat 
transfer was accompanied by electrons. If a gas was inside the shell, then the energy of the bremsstrahlung arising upon 
compression of the gas was not returned to the shell but extracted from the load with the help of the appropriate heat dis- 
charge function. The energy of a-particles of thermonuclear origin absorbed in the gas was also not taken into account. 

Similarly to [7], an interpolation equation of state [8] describing the evaporation of copper and the region of a mix- 
ture of vapor and liquid was used in connection with the calculations of processes in copper. The dependence of the electric 
conductivity of copper on density and thermal energy was also described similarly to [7]. The electric conductivity was 
chosen on the basis of experiments on the electrical explosion of conductors in the region of temperatures up to several 
electron volts and densities greater than 0.1 g/cm 3 . We note that the accuracy of the description of the electric conductivity 
in this region of states determines the initial phase of the process - explosion of the shell - and has a significant effect 
during the entire compression. In the region of densities lower than 0.01 g/cm 3 and temperatures of 10-100 eV the data 
on the electric conductivity were taken from [9], where it was calculated from the Saha and Boltzmann equations with 
screening taken into account. The electric conductivity was interpolated between the computational-experimental values and 
the data of [91 in a certain region of states of copper, and in individual cases it was extrapolated to temperatures exceedia!g 
those considered in [9]. The accuracy of the interpolation and extrapoIation naturally requires experimental checking. 
However, the calculations show that such states of copper are achieved only in the last phases of the compression; errors in 
the description of the electric conductivity even by two orders of magnitude do not result in a significant change in the 
compression process. The equation of state of an ideal gas with 3' = 5/3 was used for the calculation of D 2 or DT gases 
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contained in the shell. If the DT mixture was frozen, it was calculated with the following equation of state: 

2J = ; c  + ; w =  o0~ ( C -  t) -:- rp06~w 

v 

= ec + ~w ac = - -  t" ped~', 
z' 0 

[( i#h, if 6 ~ 1 ,  t - -  ~w\l , 2 e w 
n = i n  2, if 6 i ~ 6 ~ 6 ~ . ,  r =  -~-,/rn~ 3 ( j ,  if ~w<O, 

"5/3, if 8 > 6o, [2/3, if ewe Q, 

where P0 and c o are the initial density and speed of sound, ~ is the relative density, p is the pressure, e is the specific 
energy density, and v is the specific volume. In accordance with the experimental data given in [10], the constants in this 
equation of state were set equal to the following values: 

9o = 0.2 g/cm ~.. Co = 1.73km/sec, nl = 3, no. = -,9 

~ l =  10, 5 . ,= 100, r n = 2 / 3 ,  Q = 0 . 2 7 k J / g .  

The gas compressed inside the shell was assumed to be conducting. Its heating both due to the work of the 
completed shell and due to the Joule heat liberated upon passage of the current were taken into account. The electric 
conductivity of the gas was determined from the formulas for the electric conductivity of a completely ionized hydrogen 
plasma from [ 11 ]. The possibility of individual channels of electrical breakdown arising was not taken into consideration in 
the calculations. 

The system of MHD equations for calculation of the load was solved on a computer simultaneously with the system 
of equations of the electrical circuit. The length and the energy supply in the lines were determined after conclusion of the 
calculation Of the process in terms of its time. The collector of the device was considered in the form of a disk line with a 
characteristic impedance dependent on the radius. 

If the propagation time of a wave through the collector is much less than the propagation time of a wave through 
the main lines, then the current in the l i ne - co l l e c t o r - l oa d  system (with a constant load resistance R L) varies exponentially 
from the value Uo/(R c + R L) to Uo/(R L + Ro), where U o is the voltage to which the lines are charged, R o is the character- 

istic impedance of the system of coaxial lines, and R is the circuit resistance, i.e., the sum of R 0 and the collector resistance. 
Therefore the circuit in Fig. 1 is a sufficiently good approximation to the equivalent circuit of the device. The quantity 

t 
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where r is the time for a wave to pass through the collector, 

The series of calculations carried out have confirmed 
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the validity of the dependences derived in [6]. MHD calculations 
have shown that the dependence of the dispersal velocity of an exploding copper shell and the energy contributed to it on 
the voltage U 0 is comparatively weak. As U 0 increases from 0.75 to 2 MV, a small decrease occurs in the convergence time 
of the shell along with an increase in the energy contributed to it. Further increase of U o has practically no effect on these 
quantities, but it should evidently lead to a complication in the construction of the device. A decrease in the value of R o 
increases the rate of increase of the current in the load, and consequently the rate of energy contribution to it. The latter 
is the decisive moment for producing thermonuclear fusion. Unfortunately, there exists a limit to R o , below which it is 
impossible to achieve an increase in the energy contribution rate. The load resistance R L, which starts to determine the 
energy contribution rate to the conductor at R o < R L, is such a limit. It is unreasonable to reduce R o below R L from the 
standpoint of energy costs, because the energy stored in the lines for fixed U o and process time ~) is inversely proportional 
to the values of R o, and the energy contribution process is determined by the quantity R L- 

One can decrease R L only by either decreasing the length of the cylindrical conductor or increasing its radius. An 
increase in the shell radius is especially significant for the process. It results in an increase in the acceleration (ctue to an in- 
crease in the rate of current growth) upon acceleration of the shell by the magnetic field, an increase in the base line of shell 
acceleration (with conservation of mass it is constant), a sharp increase in the maximum flight velocity of the shell (due to 
the first two factors), and a decrease in the thermal losses in the gas (due to shortening of its compression time). The totality 
of these factors creates a nonlinear increase of the maximum temperature of the compressed gas upon an increase in radius 
and a decrease in the relative thickness of the copper shell. 

It followed from the calculations that, other fixed parameters being the same, the value of the maximum temperature 
of the compressed gas depends in the most essential way on its initial density Po" In order to produce temperatures in the 
gas of the order of several kiloelectron volts which are necessary for the onset of a thermonuclear reaction, it was necessary 
to fill the conductor with a gas at a pressure of the order of or less than atmospheric, i.e., Po ~ 0.0002. An hlcrease of P0 
by two orders of magnitude resulted in practice in cold compression of the gas. 
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Fig. 1 

As the computational  results show, one can choose the length of  the lines in such a way that double the passage 
time of  the wave over the lines is somewhat less than the compression time of  the shell. The second part (in time) of  the 
process takes place with a somewhat smaller voltage in the fines, but  this has a weak effect on the final result, since the 
greater port ion of  the energy consumed by the load is already located in its magnetic field. 

The calculations performed were of  an exploratory nature and were not designed to optimize the load in this or the 
other device. The principal task of  the calculations consisted of  exhibiting the regularities of  the process of compression of  
matter  upon the EE of a cylindrical shell and showing the possibilities of  this method from the standpoint of  producing 
thermonuclear fusion. Several versions of calculations of  different systems are given below. 

Version 1. A copper shell with a length of 1 cm and a thickness of  0.01 cm with an exterior radius r = 1.25 cm 
e 

is filled with a gaseous DT mixture having initial density P0 = 3 • 10 -s g/cm 3 . The shell is connected through a collector 
to a system of  lines charged to U o = 2 MV with an overall characteristic impedance R 0 = 0.005 ~2 

A preliminary calculation showed that maximum compression of the gas occurs at time t = 0.33 /~sec. Based on this, 
the length of the lines was selected equal to 280 cm, which corresponds to an energy reserve of 34 MJ in them. At time 
t = 0.17 gsec the voltage in the lines was lowered to 1.8 MV. It follows from the calculation that the maximum velocity of 
the shell was attained at its inner boundary and was 20 cm/~sec. Plots of  the time dependence of the inner radius r i of the 
shell and the average temperature of the gas T .  are presented in Fig. 2. The distributions of the temperature T and density 

�9 . , a v  

O In the shell--gas system which are given in Fig. 3 refer to an instant of time close to the time of  maximum compression of  
the gas. The temperature and density in the gas are practically constant. Since the thermal conductivity in copper drops off 
sharply as the density increases, the high density peak near the inner boundary of  the copper sharply reduces the heat transfer 
from the gas. The rapid decline of  the temperature in the narrow copper layer adjacent to the boundary is explained by 
this circumstance. The position of  the gas - she l l  boundary is noted in Fig. 2. 

Energies of  10 and 0.06 MJ, respectively, were imparted to the shell and the gas. The maximum energy in the shell 
was equal to 20 MJ/g. The neutron yield of  the system was 6 • 1017 neutrons, and the energy of  the a-particles absorbed in 
the gas exceeded by a factor of three the energy of  the gas imparted to it by the shell. However, it is impossible to expect 

here any kind of  intense thermonuclear flash (see [12]), since the maximum ~ pdr in the gas was equal t o  0.03 g/cm 2. 

Version 2. The mass in the copper shell is reduced in comparison with Version 1. Its external radius is increased to 
2 cm with a shell thickness of  0.001 cm, and the shell length was left equal to 1 cm. DT gas with a density of 10 -4 g/cm 3 
is placed inside the shell out to a radius of  r = 0.17 surrounded by a cold layer of  DT (0.17 ~< r ~< 0.2) having a density of 
0.2 g/cm 3 . A gap filled with a gas having the low density p = 2 • 10 -6 g/cm 3 is left between this layer and the shell. The 
voltage in the lines was taken as 2 MV, and the characteristic impedance of  the lines was R o = 0.0075 ~2. The voltage was 
reduced to 1.71 MV at time t = 0.135 ~sec. 

The time dependences of  the external r e and inner r i radii of  the shell and also of the external rDx e and inner rDT i radii 
of the frozen layer of  DT are presented in Fig. 4. After  the impact of  the shell with the DT layer the velocity of their 
common boundary was 37 cm//~sec, and the inner surface of  the layer was accelerated to 42 cm/IJsec. In 3 nsec after the 
impact, compression of the gas t o  rDT i = 4.3 • 10 -s cm occurs, and its average temperature rises to 8.5 keV. Somewhat 
before this time the temperature and density in the DT layer have the distributions presented in Fig. 5. We note that in 0.z~ nsec 
the DT layer is compressed, the distributions in it become equal, and the average values of  the density and temperature are 
40 g/cm 3 and 0.6 keV. Energies of  7 and 1 MJ out of  the 21 MJ of  the initial reserve in the lines are imparted to the shell 
and the DT, respectively. The maximum values of  the internal energy in the copper near its inner boundary reach 70 MJ/g. 
The energy of  the a-particles absorbed in the gas exceeded by a factor of 7 the energy from compression of the gas by the 

shell, the quanti ty S pdr amounted to 0.4 g/cm 2, and the neutron yield was of  the order of 1017; one-half of  it  goes into 
the DT gas, and the other half goes into the initially frozen layer of  DT. 

Version 3. DT gas with a density Po = 0.07 g/cm 3 is enclosed in a copper cylindrical shell 0.012 cm in thickness 
with an external radius r e = 1.2 cm. The shell length is 3 cm. A system of lines with voltage U o = 2 MV and characteristic 
impedance R o = 0.03 gZ is discharged into the shell. The problem was considered with the goal of  clarifying what the 
compression of  a gas of high initial density will lead to. 
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The compression process occurred comparatively slowly: The flight velocity of the shell did not exceed 4 cm//asec. 
The maximum compression was 220 in all. The gas was practically unheated. Up to the instant of maximum compression 
the gas was a thin filament of cold matter of high density. The quantity J" pdr rose to 0.92 g/cm 2 . Plots of the time 

dependence of the external r e and inner r I radii of the shell and of the quantity f pdr are presented in Fig. 6. It follows 
from the calculation that out of the 26 MJ of initial energy reserve 21 MJ goes into the system shell + gas. Of this 4.2 MJ 
constitutes the shell energy, and 3.5 MJ the energy of the gas, and the remaining energy is in the magnetic field of the 
system. One should note that the required initial energy reserve in the lines depends significantly on the maximum value of 

the quantity S P&" Thus in order to obtain a value of 0.67 for this quantity, 12 MJ of initial energy reserve is necessary in 
all. 
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Common to all the calculations is the fact that a large portion of the energy stored in the fines goes into the load 
and its magnetic field upon sufficiently good agreement in the calculations between the load and line impedances. This 
portion was higher than 90% in connection with the calculation of one of the systems with an energy reserve of 2.5 MJ. 
Naturally, the energy of the load exceeded 30% of this reserve. We note that one should not expect self-heating of the gas 
for this system due to a thermonuclear reaction; however, the neutron yield obtained in the calculation proved to be 
sufficiently high: %10 is. 

It is interesting to note the characteristic peculiarity of gas compression upon EE of a shell which is related to 
variation of the distribution of the conductivity in the conductor during the EE process. In the initial stage the maximum 
value of the current density is necessary for the region of the conductor adjacent to its outer boundary due to the skin 
effect. The magnetic field prevents the conductor from flying apart; however, a small decrease in the density and the con- 
tribution of Joule heating nevertheless result in a decline in the conductivity of the outer part of the conductor by approxi- 
mately two orders of magnitude. This situation amplifies the process of the penetration of the magnetic field and the 
maximum density of the current within the conductor. The magnetic field rises with a large gradient towards the inner 
boundary of the copper shell. A rapid increase in the magnetic and hydrodynamic (due to the large current density and the 
liberation of Joule heat) pressures leads to a sharp acceleration and unloading of the inner part of the shell. Gas with low 
density and pressure located inside the shell does not impede this motion. As the density of the inner part of the conductor 
decreases, its conductivity decreases and becomes a minimum (over the cross section). The current density curve falls steeply 
as the radius decreases. The density distribution (and conductivity distribution as well) declining from the outer boundary 
to the inner one which has been established in the shell facilitates this. Approximately from this moment the inner layers 
of the shell continue to fly by inertia; the outer layers, and gradually the entire mass of the shell, start to be accelerated by 
the magnetic field. This is what happends until the inner layers start to be decelerated due to resistance by the compressed 
gas. After this, equalization of the densities, and consequently the conductivity and current density, occurs over the cross 
section of the conductor. A large gradient of the current density remains only in a narrow neighborhood of the inner 
boundary of the conductor. It creates an additional shock through the gas near the moment of maximum compression. 
Figure 2, in which it is evident that the inner radius of the shell produces an additional acceleration inwards near the 
moment of its stopping, can serve as an illustration of what has been said. 

Let us dwell on the question of the effect of a current flowing through the gas and the process of compression of 
the gas by the shell. The pattern of the process was one and the same in all the calculations. A remarkable conductivity 
appeared in the gas at times close to the time of the limiting compression of the gas, when its temperature rose to a value of 
1 keV. The conductivity of the gas increased rapidly and became greater by several orders of magnitude than the conductivity 
of the copper as the gas was compressed further. A flow of current began through the gas, but notwithstanding the difference 
indicated above between the conductivity of the materials, the value of the current density in the gas was comparable to the 
values of the current density flowing through the copper due to the small radii, and consequently the large inductive impe- 
dance. And since the cross-sectional area of the gas at these times was several orders of magnitude smaller than the cross- 
sectional area of the copper, practically the entire current flowed through the copper conductor. The difference between 
the maximum temperatures attained in the gas with and without its conductivity taken into account did not exceed several 
percent. 

The efficiency of the devices may turn out to be comparatively high. For example, in order to obtain in version 2 
an overall efficiency (with respect to the initial energy reserve in the lines) greater than unity, it is sufficient that a compara- 
tively small portion of the DT (about 1%) react. 

Assumptions which simplify the conduct of the calculations are: one-dimensional approximation, taking thermal 
conductivity into account in the diffusion approximation, a single temperature for the plasma, and others; they make the 
results described idealized. Therefore the calculations only illustrate the maximum possibilities of the systems considered. 
Taking more complete account of the physical phenomena which occur upon the EE of cylindrical shells may introduce 
significant corrections both to the computational results and to the choice of the parameters of the systems. However, the 
data obtained by computational means as well as those in [ 1-5] indicate the advisability of further investigation of the 
compression processes upon EE of cylindrical shells. 
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CUMULATIVE BEHAVIOR OF CONVERGENT SHOCKS 

WITH DISSIPATION EFFECTS 

V. S. Imshennik UDC 533.6.01 

1. One-dimensional (spherically or cylindrically symmetric) converging shock waves represent a familiar example of 
cumulative gasdynamical processes, which play so vital a part in nature and technology [ 1 ]. Asymptotic solutions of the 
converging shock-wave problem in the neighborhood of the center of axis of symmetry are found in the well-known self- 
similar solutions indicated independently by Guderley [2] and Landau and Stanyukovich [3]. The domain of validity of 
these solutions depends on the initial and boundary conditions (the simplest of which occur for a cold stationary gas with 
constant density p0 and a constant-velocity piston), but a self-similar solution is almost always realized in a sufficiently 
close neighborhood [4]. In this solution, at the instant of "cumulation" of the shock front (usually taken as t = 0) and 
strictly at the center or axis of symmetry, the velocity of the front ("shock velocity") as well as the pressure and tempera- 

. , . . : / h - :  : - - k r h  - - t )  , t)~(-~-:) ~r~l--h)~ where the self- ture at the front increase without bound: rfN[--~) Nrf ~.rf ,,, �9 pf N rf N ( -  

similarity index k = k(7) ~> 1 for an isentropic exponent of the gas 7/> 1 [4, 5]. The self-similar variable, on which depend 

all the unknown functions of the self-similar solution, has the form g = r / r f  = ~or k / ( - t )  in this case, where at the shock 
1 

front ~ = 1 and r f=  ( -  t/~0)~. The only arbitrary constant in the self-similar solution has dimensions cm-ks and quantitatively 

characterizes the "strength" of the initial impulse. The self-similar solution admits continuation in the reflected-shock stage. 
The cumulative buildup of energy between the shock front ~ = 1 and an arbitrary value of the variable ~* > 1 behind the 
front (~* normally coincides with a singular G-line that nowhere intersects the C-characteristics directed ~oward the shock 
front) is charadterized by the following dependence on the radius of the shock front: g a ~ ~}-~-h(spherical case) or E a N ~-_oh 

(cylindrical case) [4]. As a result of the cumulative process, the energy of this region decreases as rf -+ 0 more slowly than 
r~ (spherical case) or r~ (cylindrical case), because the self-similarity index k > 1 (or "r > 1). 

In this article we investigate the constraints imposed on the "cumulation" parameters of the self-similar solution (with 
inclusion of the reflected-shock stage) due to dissipation effects. These effects clearly become significant when the effective 
mean free path of the investigated gas particles is commensurate with the radius of the shock front, I s "~ rf. The allowance 
for dissipation effects, first of all, shows that all the hydrodynamic and thermodynamic variables are bounded and, second, 
yields very general expressions for the maximum cumulation parameters, which are determined simultaneously with the 
characteristics of the self-similar solution and dissipation effects. Of course, the cumulation parameters can actually also be 
affected by the deviations of the motion of the gas from one-dimensionality in connection with the singularities due to the 
well-known instability of converging shock waves [6, 7]. We realize that these deviations are rendered inconsequential by 
the sufficiently symmetric initial and boundary conditions of the problem. Accordingly, violations of the one-dimensional 
symmetry of the motion can not only attenuate the cumulation parameters, but can amplify them as well, as shown by the 
examples of two-dimensional cumulative motions in the case of a plasma focus and a current sheet [8, 9]. 

For sufficiently strong converging shock waves, in general, the most interesting case is a fully ionized plasma. If a 
high-temperature plasma generated in a cumulation zone has a sufficiently high density, its motion is described by the 
system of two-temperature gasdynamic equations with well-known dissipation effects, which in this case are associated with 
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